MATH 521A: Abstract Algebra

- Preparation for Exam 2
- 1. For ring R, define its center $Z(R) = \{a \in R : \forall r \in R, ar = ra\}$. Prove that Z(R) is a subring of R.
- 2. For ring R, and $x \in R$, define the centralizer of $x C_x(R) = \{a \in R : ax = xa\}$. Prove that $C_x(R)$ is a subring of R.
- 3. Let R be a ring, and S_1, S_2 both subrings of R. Prove or disprove that $S_1 \cup S_2$ must be a subring of R.
- 4. Let $R = \mathbb{Z}, U = 17\mathbb{Z}$, two rings. Suppose $U \subseteq V \subseteq R$, and V is a ring. Prove that V = U or V = R.
- 5. Prove that $\mathbb{Q}[\sqrt[3]{2}] = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} : a, b, c \in \mathbb{Q}\}$ is a commutative ring with identity.
- 6. For ring R with $a, b \in R$, we say a is a *left divisor* of b if there is some $c \in R$ with ac = b. Suppose that R is a field, $a, b \in R$, and $a \neq 0$. Prove that a is a left divisor of b.
- 7. With left divisors defined as in problem 6, let $R = M_{2,2}(\mathbb{R}), a = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}, b = \begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix}$. Determine whether or not a is a left divisor of b, and whether or not b is a left divisor of a.
- 8. For the next four problems, let $X = \{1, 2, 3, \dots, 100\}$, and let the power set of X, denoted $\mathcal{P}(X)$, be the set of all subsets of X. Let R have ground set $\mathcal{P}(X)$, with operations $a \odot b = a \cap b$ and

 $a \oplus b = a\Delta b = (a \setminus b) \cup (b \setminus a) = (a \cup b) \setminus (a \cap b)$

Prove that R is a commutative ring with identity

- 9. For R as in problem 8, for all $a \in R$, define $\overline{a} = 1_R \oplus a$. Prove that (i) $a \odot a = a$; (ii) $a \oplus a = 0$; (iii) $\overline{a} = X \setminus a$ (the complement of a); (iv) $a \oplus \overline{a} = 1_R$; (v) $a \odot \overline{a} = 0_R$.
- 10. For R as in problem 8, define $f: R \to \mathbb{Z}_2$ via $f: x \mapsto \begin{cases} [0] & 7 \notin x \\ [1] & 7 \in x \end{cases}$. Prove that f is a homomorphism.
- 11. For $X, \mathcal{P}(X)$ as in problem 8, define S with ground set $\mathcal{P}(X)$ and operations $a \odot b = a \cap b$ and $a \boxplus b = a \cup b$. Prove that S is not a ring.
- 12. Let R be a ring such that $x^2 = 0$ for all $x \in R$. For all $a, b \in R$, prove that a commutes with ab + ba.
- 13. Suppose R has all the ring axioms except a + b = b + a. Prove that axiom from the others.
- 14. Let $m, n \in \mathbb{N}$ with gcd(m, n) = 1. Consider the function $f : \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ given by $f : [a]_{mn} \mapsto$ $([a]_m, [a]_n)$, proved a homomorphism in class. Prove that f is a bijection.
- 15. For ring $R, x \in R$, and $n \in \mathbb{N}$, we say x has additive order n if $\underbrace{x + x + \dots + x}_{n} = 0_{R}$, and for m < n we have $\underbrace{x + x + \dots + x}_{n} \neq 0_{R}$. We write this $ord_{R}(x) = n$. Suppose we have a homomorphism $f: R \to S$, and $x \in R$ has an additive order. Prove that $ord_S(f(x))|ord_R(x)$, i.e. the order of f(x) divides the order of x.
- 16. With additive order as defined in problem 15, suppose that $x \in R$ has an order and $f: R \to S$ is an isomorphism. Prove that $ord_R(x) = ord_S(f(x))$.
- 17. Let $R = M_{2,2}(\mathbb{Z})$ and $S = \mathbb{Z}$. Prove or disprove that trace: $R \to S$ given by trace $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + d$ is a homomorphism.
- 18. Let $R = M_{2,2}(\mathbb{Z})$ and $S = \mathbb{Z}$. Prove or disprove that det: $R \to S$ given by $det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad bc$ is a homomorphism.
- 19. Let R be the set of all continuous real-valued functions defined on [0, 1], with the natural ring operations (f+g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x). Prove that R is a commutative ring with 1_R .
- 20. Let R be the ring from problem 19, and define $\phi : R \to \mathbb{R}$ as $\phi : f \mapsto f(1/2)$. Prove that ϕ is a homomorphism, and find its kernel and image.